Immune Response and Hormonal Alterations in C1-inhibitor Deficiency

Vojtech Thon

University Centre for Primary Immunodeficiencies
Department of Clinical Immunology and Allergology
St. Anne University Hospital, Masaryk University
Brno, Czech Republic
Hereditary angioedema

Deficiency of C1 esterase inhibitor (C1-INH) is the most frequent genetic defect of complement system. This inherited defect is responsible for the clinical disorder hereditary angioedema (HAE).

The clinical symptoms of HAE are the result of submucosal and subcutaneous oedema of respiratory tract, gastrointestinal tract and skin.
Hereditary deficiency of C1 inhibitor (C1 INH)

• Congenital deficiency of functional C1 INH
• Clinically manifests as hereditary angioedema
 (Quincke 1882, Osler 1888)
• C1-INH is central to the regulation of the complement
 coagulation
 and kinin-forming systems

• Clinical symptoms:
 swelling,
 abdominal attacks,
 edema of the upper airway

• Treatment:
 acute attacks - C1-INH concentrate;
 prophylactic - androgens
 or antifibrinolytic agents
Hereditary angioedema

• In the great majority (at least 85%) of HAE patients plasma levels of C1-INH measured by immunochemical methods are low (HAE I),

• a minority (15% or less) of patients have normal or elevated levels of immunochemical C1-INH but the bulk of the protein is functionally inactive (HAE II).
C1 INH
(mean ± SEM)

HAE I Controls HAE II

0 250 500 750 mg/l

P<0.0001
P=0.0005

HAE I (n = 14) Controls (n = 17) HAE II (n = 8)
Hereditary angioedema

Inefficiently regulated and chronic low level activation of the classical pathway results in decreased plasma level of C2 and C4 in both types of HAE.
C4 (mean ± SEM)

HAE Controls

0.0 0.1 0.2 0.3

P<0.0001

HAE: n = 22 Controls: n = 17

C2 (mean ± SEM)

HAE Controls

0 0 10 20

P<0.0001

HAE: n = 22 Controls: n = 17

C3 (mean ± SEM)

HAE Controls

0.0 0.5 1.0 1.5

HAE: n = 22 Controls: n = 17

CH50 (mean ± SEM)

HAE Controls

0 25 50 75 100

P<0.0001

HAE: n = 22 Controls: n = 17
Hereditary angioedema

• The complement system constitutes an important part of the innate immune system, but plays also an important roles in the adaptive immune response: the primary antibody response and/or the formation of immunological memory are dependent on complement and its receptors.
Natural antibodies against rabbit red cells

HAE Controls

<table>
<thead>
<tr>
<th>Titer</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td>64</td>
</tr>
<tr>
<td>128</td>
</tr>
<tr>
<td>256</td>
</tr>
<tr>
<td>512</td>
</tr>
</tbody>
</table>

* $P<0.03$
Immune response after antigenic stimulation:
Pneumococcal polysaccharide vaccine
(Pneumo 23 inj., Pasteur Merieux Serum & Vaccines, France)

anti-PCP Ab before vaccination
(mean ± SEM)

anti-PCP Ab 3 months after vaccination
(mean ± SEM)

* P<0.02
One year later

anti-PCP Ab
1 year after vaccination
(mean ± SEM)

mg/l

HAE

Controls

n.s.
Immunisation with HBV vaccine
(Engerix B 20 µg inj., SmithKline Beecham Biologicals S.A., Belgium)

anti-HBsAg Ab
after 3th vaccination
(mean ± SEM)

\begin{figure}
\centering
\begin{tikzpicture}
\begin{axis}[
 width=\textwidth,
 height=0.5\textwidth,
 ybar stacked,
 ymin=0,
 ymax=4500,
 enlargelimits=false,
 legend style={at={(0.5,1.05)},anchor=north},
 nodes near coords,]
\addplot+[ybar] coordinates { (HAE, 3000) (Controls, 1500) };
\addplot+[ybar] coordinates { (HAE, 4500) (Controls, 1500) };
\legend{HAE, Controls}
\end{axis}
\end{tikzpicture}
\end{figure}

* P = 0.04
Serum immunoglobuline levels

<table>
<thead>
<tr>
<th>Immunoglobulins</th>
<th>HAE</th>
<th>Controls</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgG (g/L)</td>
<td>11,4 ± 1,7</td>
<td>11,3 ± 1,3</td>
<td>0,924</td>
</tr>
<tr>
<td>IgA (g/L)</td>
<td>2,2 ± 1,0</td>
<td>2,5 ± 0,8</td>
<td>0,501</td>
</tr>
<tr>
<td>IgM (g/L)</td>
<td>1,2 ± 0,4</td>
<td>1,1 ± 0,3</td>
<td>0,581</td>
</tr>
<tr>
<td>IgE (IU/mL)</td>
<td>129,3 ±116,5</td>
<td>133,6 ±114,1</td>
<td>0,935</td>
</tr>
<tr>
<td>IgG1 (g/L)</td>
<td>7,6 ± 1,2</td>
<td>6,9 ± 0,8</td>
<td>0,151</td>
</tr>
<tr>
<td>IgG2 (g/L)</td>
<td>4,2 ± 1,7</td>
<td>3,8 ± 1,2</td>
<td>0,553</td>
</tr>
<tr>
<td>IgG3 (g/L)</td>
<td>0,5 ± 0,1</td>
<td>0,6 ± 0,2</td>
<td>0,147</td>
</tr>
<tr>
<td>IgG4 (g/L)</td>
<td>0,6 ± 0,4</td>
<td>0,5 ± 0,2</td>
<td>0,747</td>
</tr>
</tbody>
</table>
Functional T cell response

Proliferative response
Stimulation with PHA
(PBMNC, mean ± SEM)

- PHA 5 µg/ml
- PHA 1 µg/ml
- Medium

Controls

HAE

* P = 0.002

* P = 0.001

Proliferative response
Stimulation with ConA
(PBMNC, mean ± SEM)

- ConA 5 µg/ml
- ConA 1 µg/ml
- Medium

Controls

HAE

* P = 0.001

* P = 0.02

dpm
B cell response

Proliferative response
Stimulation with PWM
(PBMNC, mean ± SEM)

![Graph showing B cell response](image)

- PWM 5 µg/ml
- PWM 1 µg/ml
- Medium

<table>
<thead>
<tr>
<th>Condition</th>
<th>dpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWM 5 µg/ml</td>
<td>P<0.0001</td>
</tr>
<tr>
<td>PWM 1 µg/ml</td>
<td>* P = 0.0002</td>
</tr>
<tr>
<td>Medium</td>
<td>[Blank]</td>
</tr>
</tbody>
</table>
Immunological response in HAE

• We found significantly higher level of the natural antibodies in patient group as well as significantly higher specific antibody response against pneumococcal polysaccharide antigen and HBsAg in HAE patients as compared with controls but occurrence of a panel of autoantibodies was similar.

• Moreover, stimulation of peripheral blood mononuclear cells with mitogens (PWM, PHA, ConA) leads to higher proliferative response in HAE patients.
Hormonal alterations and the role of danazol in steroid hormone conversion

Danazol, an androgenic steroid, is favorable in HAE patients as a long term prophylactic agent.

The status of the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axis hormones has never been systematically investigated in a larger group of patients with HAE.
Adrenal and gonadal pathways of steroidogenesis

Cholesterol
- Pregnenolone
 - 1
 - Progesterone
 - 17α-Hydroxy-pregnenolone
 - 1
 - 17α-Hydroxy-progesterone
 - 1
 - 11-Deoxy-cortisol
 - 1
 - Cortisol

Aldosterone

DHEAS
- DHEA
 - 1
 - Androstenedione
 - 1
 - Estrone
 - 2
 - 17β-Estradiol

Testosterone

Enzymes:
1. 3β-hydroxysteroid dehydrogenase;
2. aromatase;
3. 17β-hydroxysteroid dehydrogenase.

Abbreviations:
DHEA, dehydroepiandrosterone;
DHEAS, DHEA sulfate.
Adrenocorticotropic hormone and cortisol serum levels in patients with hereditary angioedema

- **ACTH**
 - HS Typ I Typ II
 - HS Typ I Typ II

- **Cortisol**
 - HS Typ I Typ II
 - HS Typ I Typ II

Statistical significance:
- ACTH: Typ I vs HS, 0.001
- ACTH: Typ II vs Typ I, 0.001
- Cortisol: +D vs HS, 0.019
Serum levels of ACTH and cortisol

- Danazol treatment did not change serum levels of ACTH.
- Serum cortisol levels were similar in all groups. However, patients with prior danazol treatment demonstrated lower serum levels of cortisol.
Serum DHEA and the ratio of serum DHEA / androstenedione (ASD)
in patients with hereditary angioedema
Hormon conversion

• Serum levels of androstendion were not different.
• It is obvious that danazol treatment was related to a decreased ratio of serum DHEA / serum androstendion. This indicates a danazol-induced increase of DHEA conversion into the direction of androstendion.
• Reduction of DHAЕ is not due to inflammation.
Adrenal and gonadal pathways of steroidogenesis

Cholesterol
 ↓
Pregnenolone
 ↓
 1
Progesterone
 ↓
 ↓
 ↓
11-Deoxycorticosterone
 ↓
 ↓
 ↓
Aldosterone

17α-Hydroxypregnenolone
 ↓
 ↓
 ↓
17α-Hydroxyprogesterone
 ↓
11-Deoxy cortisol
 ↓
 ↓
Cortisol

11-Deoxy-corticosterone
 ↓
 ↓
 ↓
 ↓

17α-Hydroxyprogesterone
 ↓
DHEA
 ↓
Androstenedione
 ↓
 ③
 ③
Testosterone

Enzymes:
1. 3β-hydroxysteroid dehydrogenase;
2. aromatase;
3. 17β-hydroxysteroid dehydrogenase.

Abbreviations:
DHEA, dehydroepiandrosterone;
DHEAS, DHEA sulfate.
Comparison of gonadal hormones in patients with and without danazol administration

<table>
<thead>
<tr>
<th></th>
<th>healthy subjects</th>
<th>patients without danazol (n = 15)</th>
<th>patients with danazol (n = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>serum free testosterone (nmol / l)</td>
<td>0.027 ± 0.007</td>
<td>0.021 ± 0.006</td>
<td>0.070 ± 0.01†, §</td>
</tr>
<tr>
<td>ratio free testosterone / ASD</td>
<td>4.2x10^{-3} ± 0.8x10^{-3}</td>
<td>4.5x10^{-3} ± 1.2x10^{-3}</td>
<td>14.1x10^{-3} ± 1.2x10^{-3}†, §</td>
</tr>
<tr>
<td>ratio free testosterone / DHEA</td>
<td>1.0x10^{-3} ± 0.3x10^{-3}</td>
<td>0.6x10^{-3} ± 0.2x10^{-3}</td>
<td>3.8x10^{-3} ± 0.6x10^{-3}‡, §</td>
</tr>
<tr>
<td>serum 17β-estradiol (nmol / l)</td>
<td>0.23 ± 0.03</td>
<td>0.18 ± 0.01</td>
<td>0.19 ± 0.02</td>
</tr>
<tr>
<td>ratio 17β-estradiol / free testosterone</td>
<td>26.6 ± 6.4</td>
<td>37.4 ± 13.0</td>
<td>3.4 ± 0.6†, §</td>
</tr>
</tbody>
</table>

†p<0.005, ‡p<0.001 versus patients without danazol. §p<0.005 versus healthy subjects.
Abbreviations: ASD, androstenedione; DHEA, dehydroepiandrosterone.
Conclusion

• This study demonstrated decreased ACTH in Type II HAE and decreased DHEA in patients with Type I and Type II HAE independent of danazol therapy; danazol amplify this effect.

• It also demonstrates that danazol induced a market up-regulation of testosteron in relation to precursors and downstream 17β-estradiol.
Distribution of primary immunodeficiency diseases in the Czech Republic
(Inhabitants: 10 100 000, patients: 577)

- Complement deficiencies (n = 66)
- Antibody deficiencies (n = 450)
- Combined deficiencies (n = 39)
- Phagocytic disorders (n = 11)
- Other Primary Immunodeficiencies (n = 11)
Co-workers

University Centre for Primary Immunodeficiencies, Department Clinical Immunology and Allergology, Masaryk University, Brno, Czech Republic

Pavel Kuklinek Jindrich Lokaj
Marcela Vlkova Jiri Litzman

Department of Internal Medicine I, Laboratory of Neuroendokrinoinmunology, University Hospital Regensburg, Germany

Peter Härle Jürgen Schölmerich
Rainer H. Straub
C1-inhibitor deficiency

Thank you for your attention.